Multi‐objective optimisation design of a suspension‐guided permanent magnet synchronous linear motor for ropeless elevator

نویسندگان

چکیده

In this article, a suspension-guided permanent magnet synchronous linear motor (SG-PMSLM) for ropeless elevator is proposed, which can meet the requirements of high thrust and density elevator, reduce vibration noise wheel-rail wear during operation. The structure, working principle electromagnetic characteristics SG-PMSLM are analysed. order to improve overall performance SG-PMSLM, article aims at improving average density, reducing fluctuation SG-PMSLM. Firstly, sensitivity analysis key structural parameters conducted, that have significant influence on three optimisation objectives selected as variables. Secondly, response surface model built, Particle Swarm Optimisation algorithm combined conduct multi-objective design Thirdly, optimised solution set obtained objectives. Finite Element Analysis used verify has better diversity effectively compared with initial design. Finally, verified by experiments.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

متن کامل

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

متن کامل

Using Modular Pole for Multi-Objective Design Optimization of a Linear Permanent Magnet Synchronous Motor by Particle Swarm Optimization (PSO)

In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and mo...

متن کامل

Optimum Design of a Three-Phase Permanent Magnet Synchronous Motor for industrial applications

Permanent Magnet Synchronous Motors (PMSMs) have been widely used in many industrial applications. In This paper a new method for multi objective optimal design of a permanent magnet synchronous motor (PMSMs) with surface mounted permanent magnet rotor is presented to achieve maximum efficiency and power density using a Bees algorithm for industrial applications. The objective function is a...

متن کامل

Design and Simulation of a Moving-magnet-type Linear Synchronous Motor for Electromagnetic Launch System

The Electromagnetic Aircraft Launch System (EMALS) offers significant benefits to the aircraft, ship, personnel, and operational capabilities. EMALS has such advantages as high thrust, good controllability, reusable, etc., as a launching motor, a double-side plate Permanent Magnet Linear Synchronous Motor (PMLSM) can provide high instantaneous thrust. This paper presents the design and analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Electric Power Applications

سال: 2022

ISSN: ['1751-8660', '1751-8679']

DOI: https://doi.org/10.1049/elp2.12247